
Background
Matrix metalloproteinases (MMPs) are one of the most 
important enzymes that play a significant role in the 
normal physiology of cells (e.g., tissue remodeling and 
wound healing) and the etiology of several diseases. 
They are zinc- and calcium-dependent enzymes and are 
classified into several groups based on their substrates, 
including collagenases, gelatinases, stromelysins, 
stromelysins, matrilysins, member-type, and other types of 
MMPs that have not undergone classification. Neutrophils 
are the sources of MMP-8, and therefore, they have also 
been named neutrophil collagenase or collagenase-2 (1-
3). Previous studies have indicated that in periodontal 
and peri-implant inflammation/diseases, the active form 

of MMP-8 was elevated in oral fluids (4-6). Moreover, the 
overexpression of MMP-8 has also been demonstrated in 
the oral cavity of patients with Crohn’s disease (7,8), as 
well as the saliva of patients suffering from caries lesions 
(9). Accordingly, the inhibition of MMP-8 may have 
preventive/therapeutic effects on several oral diseases.

Cinnamic acids are organic compounds with a basic 
structure of C6-C3, named phenylpropanoid backbone, 
and are mostly found in herbs and microorganisms 
(10). Cinnamic acid is the principal component that is 
found in many plants such as Cinnamomum cassia, and 
Panax ginseng, as well as vegetables, grains, and honey 
(11). It is derived from phenylalanine and has several 
pharmaceutical advantages, including antioxidant, anti-
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Abstract
Background: Matrix metalloproteinase-8 (MMP-8) is the most abundant member of the MMP family in 
human dentin. It takes a part in the normal physiology of tissue remodeling and wound healing, while 
the overexpression/hyperactivity of this protein leads to several oral disorders, including dental caries 
and peri-implant inflammation/diseases, and therefore, MMP-8 inhibition may have therapeutic effects. 
Accordingly, the current study aimed to identify potential MMP-8 inhibitors from cinnamic acid derivatives.
Methods: The binding affinity of cinnamic acid and its several derivatives to the MMP-8 active site were 
estimated using the AutoDock 4.0 software. The pharmacokinetics, toxicity, and bioavailability of top-
ranked MMP-8 inhibitors were also predicted by utilizing bioinformatics web tools.
Results: Five of the studied components, including chlorogenic acid (CGA), caffeic acid 3-glucoside, 
rosmarinic acid, N-p-Coumaroyltyramine, and caffeic acid phenethyl ester (CAPE) demonstrated a 
salient affinity of binding to the MMP-8 catalytic site (∆Gbinding < -10 kcal/mol). It was estimated that these 
compounds can inhibit the MMP-8 at the nanomolar concentration, and therefore, were considered as 
top-ranked MMP-8 inhibitors. Finally, none of the top-ranked components revealed a considerable side 
effect and thus were found to be suitable for oral use.
Conclusions: The results of the present study suggested that CGA, caffeic acid 3-glucoside, rosmarinic 
acid, N-p-coumaroyltyramine, and CAPE might have protective effects on tooth decay and peri-implant 
inflammation/diseases.
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inflammatory, anticancer, and antibacterial properties 
(12-14). Additionally, cinnamic acid can result in several 
derivatives with many beneficial effects, including anti-
inflammatory, antimicrobial (15), antidiabetic (16), and 
anticancer (17) activities. Several previous studies (18-20) 
have experimentally confirmed the anti-bacterial effects of 
cinnamic acid and its several derivatives on Streptococcus 
mutans and Porphyromonas gingivalis. S. mutans and P. 
gingivalis are well known as the main pathogens that are 
responsible for the initiation/progression of dental caries 
and periodontitis, respectively (20-22). Therefore, the 
biological efficacy of cinnamic acid and its derivatives 
have been considered for scientists regarding designing/
discovering drug candidates for therapeutic aims in various 
disorders (23). In the present study, it was suggested 
that cinnamic acid and its derivatives may be effective 
compounds in the inhibition of MMP-8. Thus, this study 
was designed based on molecular docking simulations 
to examine the binding affinity of cinnamic acid and its 
several derivatives to the catalytic site of the MMP-8.

Materials and Methods
Structural Preparation and Molecular Docking
The structure of the MMP-8 and the ligands tested in the 
current study, including cinnamic acid and a total of 11 
cinnamic acid derivatives, were downloaded from the 
Structural Bioinformatics database (https://www.rcsb.
org) and the PubChem database (https://pubchem.ncbi.
nlm.nih.gov), respectively (24,25). The Protein Data Bank 
file with the ID of 4QKZ contained the three-dimensional 
structure of MMP-8, as well as the inhibitor of the MMP-8 
(named QZK) in the Pochetti et al study with the criteria 
of X-ray resolution of 1.2 Å (https://www.rcsb.org/
structure/4QKZ). Energy optimization was applied before 
molecular docking simulations for MMP-8 and all ligands. 
All docking operations were performed by utilizing the 
AutoDock software, version 4.0 (http://autodock.scripps.
edu) (26). The AutoDock estimates the binding energy 
(∆Gbinding) between the ligand and the receptor using the 
Lamarckian genetic algorithm. The catalytic site of the 
MMP-8 was considered a docking pocket. The details of 
energy optimization, grid box options, and the residues 
identified within the catalytic domain of the MMP-8 are 
reported in our previous study (27).

As shown in Figure 1, cinnamic acid is an organic 

aromatic carboxylic acid (11) with several pharmaceutical 
characteristics, including antioxidant, antimicrobial (13), 
anti-inflammatory, antidiabetic (28), and anticancer 
effects (14). Although this acid could be synthesized by 
the enzymatic deamination of phenylalanine (29), it is 
naturally produced in herbs (30). Several derivatives of 
cinnamic acid are achieved by the modification of the 
benzene ring and the acrylic acid group (12,23,31). In this 
study, several features were considered for ligand selection 
from cinnamic acid derivatives. To this end, being a herb 
was the main character because of its low side effect 
and high availability (32). In addition, demonstrating 
antibacterial effects against tooth caries-related bacteria 
in previous studies was considered as another important 
feature of the components.

Drug-likeness Study
The Rule of Five (RO5), which has been presented by 
Lipinski et al (33), was considered to predict the drug-
likeness of the tested compounds in the present study 
using the PubChem database. According to the RO5, the 
orally administered drugs must confirm at least three of 
the incoming physical/chemical properties (Mass ≤ 500 g/
mol, Log of the partition coefficient between octanol and 
water (LogP) ≤ 5, number of accepting H-bonds ≤ 10, and 
number of the H-bond donor ≤ 5).

Absorption, Distribution, Metabolism, Excretion, and 
Toxicity 
The absorption, distribution, metabolism, excretion 
(ADME), in addition to the toxicity (ADMET) of the 
top-ranked inhibitors, were taken into consideration by 
applying SwissADME (http://www.swissadme.ch/) and 
the PreADMET (https://preadmet.bmdrc.kr/) webservers. 
The carcinogenicity of the compounds in rats and mice 
and the possible inhibitory effect of the components on 
the human ether-a-go-go-related gene channel of the 
heart were predicted to evaluate the toxicity of the ligands. 
Several pharmacokinetic characteristics of the components 
were referred to the ADME, including the gastrointestinal 
absorption, blood-brain barrier permeability, possible 
inhibition of the cytochrome P-450, and possible substrate 
for the P-glycoprotein. SwissADME applies several 
vigorous algorithms such as support vector machine, the 
Ward method, and a reciprocal nearest neighbor algorithm 
to achieve more reliable results (34).

Results
Affinity of Binding Between the MMP-8 and Small 
Molecules
Among 12 ligands tested in the present study, a total of 
five compounds revealed a salient binding affinity to the 
MMP-8 catalytic site with the criteria of ∆Gbinding ≤ -10 
kcal/mol, including chlorogenic acid (CGA), caffeic acid 
3-glucoside, rosmarinic acid, N-p-coumaroyltyramine, 
and caffeic acid phenethyl ester (CAPE). Therefore, these 
cinnamic acid derivatives were considered as top-ranked 

Figure 1. Chemical Structure of Cinnamic Acid Achieved by the ChemDraw 
(version 12.0.2.1076).
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MMP-8 inhibitors. The inhibition constant (Ki) value for 
these components was predicted to be at the nanomolar 
(nM) concentration. According to our previous research 
(27), the binding affinity and the Ki value for the control 
component (QZK) were estimated to be -9.45 kcal/mol and 
118.80 nM. Hence, the results of the molecular docking 
analysis represented that the affinity of binding between 
the top-ranked cinnamic acid derivatives, as well as the 
cynarin, and the MMP-8 catalytic domain is more than that 
of QZK. Table 1 presents the ∆Gbinding and the Ki value of all 
components evaluated in this study. Figure 2 illustrates the 
binding affinity between cinnamic acid and its derivatives, 
the control inhibitor, and the MMP-8 catalytic site. For 

post-docking analysis, the interaction modes between 
top-ranked MM-P8 inhibitors and the residues within the 
catalytic site of the MMP-8 were screened by utilizing the 
BIOVIA Discovery Studio Visualizer 19.1.0.18287 (https://
discover.3ds.com/discovery-studio-visualizer-download). 
Table 2 and Figure 3 demonstrate these interactions as 
a table and figure, respectively. Figure 4 depicts all the 
interactions between top-rank cinnamic acid derivatives 
and their corresponding residues in a unique graph by 
the Cytoscape software (https://cytoscape.org/download.
html) (35). Figure 5 illustrates the number of interactions 
calculated for each top-ranked MMP-8 inhibitor called a 
degree.

Bioavailability of Top-ranked Compounds
All chemical and physical characteristics of the top-
ranked MMP-8 inhibitors were analyzed based on the 
RO5. Interestingly, all of them were found to agree with 
Lipinski’s law, and therefore, CGA, caffeic acid 3-glucoside, 
rosmarinic acid, N-p-coumaroyltyramine, and CAPE were 
confirmed to be suitable for oral use (Table 3).

Pharmacokinetics and Toxicity of Top-ranked 
Compounds
The ADMET prediction study revealed no considerable 
toxicity for the top-ranked cinnamic acid derivatives. 
However, CGA and caffeic acid 3-glucoside were found 
to be safer than the other top-ranked compounds. 
Furthermore, N-p-Coumaroyltyramine and CAPE 
showed higher gastrointestinal absorbance compared to 
other compounds (Table 4).

Discussion
The enhanced expression and/or activity of MMP-8 is 

Table 1. The Binding Affinity to the MMP-8 Catalytic Site and the Ki Value 
Estimated for Cinnamic Acid and its Derivatives as Compared With the 
Control Component (QZK)

PubChem ID Ligand Name
Estimated Energy 
of Binding (kcal/

mol)
Ki

1 794 427 Chlorogenic acid -11.81 2.22 nM

5 281 759 Caffeic acid 3-glucoside -11.26 5.57 nM

5 281 792 Rosmarinic acid -11.03 8.20 nM

5 372 945 N-p-Coumaroyltyramine -10.25 30.78 nM

5 281 787 Caffeic acid phenethyl ester -10.23 31.98 nM

6 124 212 Cynarin -9.58 94.45 nM

637 540 o-Coumaric acid -7.37 3.95 uM

689 043 Caffeic acid -7.12 6.07 uM

445 858 Ferulic acid -6.80 10.40 uM

637 542 p-Coumaric acid -6.44 18.98 uM

444 539 Cinnamic acid -6.11 33.28 uM

637 775 Sinapinic acid -5.95 43.21 uM

53 361 485 QZK (Ctrl) -9.45 118.80 nM

Note. Ki: Inhibition constant; Ctrl: Control.

Figure 2. The Binding Affinity of Cinnamic Acid and its Derivatives to the Catalytic Domain of MMP-8 Compared to the Control Component (QZK). Note. X-axis 
demonstrates the name of the ligands. The green dot illustrates the MMP-8 control inhibitor (QZK). Red circles show the top-ranked MMP-8 inhibitors with the 
∆G binding ≤ -10 kcal/mol, and the orange spot represents cynarin with the estimated energy of binding more negative than the QZK. In addition, the blue ones 
demonstrate the compounds with lower binding affinity to the MMP-8 catalytic site as compared with the QZK. Y-axis depicts the estimated energy of binding 
(kcal/mol).
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Table 2. Interaction Modes Identified Between Top-ranked Cinnamic Acid Derivatives and the Residues Within the MMP-8 Catalytic Site

Ligand Name Hydrogen Bond (Distance Å) Hydrophobic Interaction (Distance Å) Unfavorable (Distance Å)

Chlorogenic acid Leu160 (3.13); Asn218 (5.28) His197 (4.08); Val194 (3.97); Tyr219 (4.67) Ala220 (3.44)

Caffeic acid 3-glucoside
Glu198 (4.80); Pro217 (4.57); Ala213 
(5.43); Leu214 (3.55); Ala220 (3.70); 
Gly158 (4.19); Ala161 (4.94)

His197 (4.25); Val194 (5.48) Ala220 (3.70)

Rosmarinic acid Tyr219 (4.28); Ala220 (3.01) His197 (4.46); Ile159 (5.86) NA

N-p-Coumaroyltyramine Ala220 (3.62, 6.17); Pro217 (5.31) His197 (3.90, 4.14); Tyr219 (4.85) NA

Caffeic acid phenethyl ester Tyr219 (6.11); Pro217 (6.00); Asn218 (4.60) His197 (4.04) NA

Note. MMP-8: Matrix metalloproteinase-8; NA: Not available.

Figure 3. Interaction Types Detected Between Residues Inside the MMP-8 Catalytic Domain and (A) Chlorogenic Acid, (B) Caffeic Acid 3-glucoside, (C) 
Rosmarinic Acid, (D) N-p-Coumaroyltyramine, and (E) Caffeic Acid Phenethyl Ester After the Post-Docking Analysis.
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associated with several human disorders, including oral 
cavity and peri-implant inflammation/diseases. In the 
present study, molecular docking analysis was conducted to 
estimate the binding affinity of several natural compounds 

to the MMP-8 catalytic domain from cinnamic acid and 
its derivatives to discover drug candidates for MMP-8 
inhibition.

Ribeiro et al (18) studied the anti-bacterial effects of 

Figure 4. A Unique Graph Demonstrating All Interactions Between Top-ranked Compounds and Their Corresponding Amino Acids Within the MMP-8 Catalytic 
Site. Note. The red lines show a π-π paring interaction, which is known as one of the most stabilizing interactions between the ligand and the receptor.

Figure 5. Degree Chart. Note. X and y axes represent the residues and their corresponding degree, respectively.

Table 3. Chemo-physical Characteristics of the Top-ranked MMP-8 Inhibitors

Ligand Name Molecular Weight (g/mol) LogP Hydrogen Bond Donor Count Hydrogen Bond Acceptor Count Orally Active Drug

Chlorogenic acid 354.31 -0.4 6 9 Yes

Caffeic acid 3-glucoside 342.3 -1.4 6 9 Yes

Rosmarinic acid 360.3 2.4 5 8 Yes

N-p-Coumaroyltyramine 283.32 2.7 3 3 Yes

Caffeic acid phenethyl ester 284.31 4.2 2 4 Yes

Note. LogP: The logarithm of the partition coefficient between n-octanol and water.
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several plant-based compounds, including cinnamic acid 
against S. mutans in vitro by indicating the minimum 
bacterial concentration for S. mutans. Based on their 
report, cinnamic acid revealed anti-microbial activity 
against S. mutans with low cytotoxic properties, suggesting 
that this compound may be useful for therapeutic aims 
of tooth decay. In the current study, it was estimated 
that cinnamic acid can connect to the MMP-8 catalytic 
domain with a ∆Gbinding of -6.11 kcal/mol, implying that 
cinnamic acid has a moderate affinity of binding to 
MMP-8. However, five of the cinnamic acid derivatives 
represented considerable binding affinity to the MMP-8 
active site with the criteria of ∆Gbinding less than -10 kcal/
mol, including CGA, caffeic acid 3-glucoside, rosmarinic 
acid, N-p-coumaroyltyramine, and CAPE.

CGA is a secondary metabolite in herbs with several 
pharmaceutical properties (e.g., antioxidant, antibacterial, 
cardioprotective, neuroprotective, and anti-inflammatory 
characteristics). Moreover, CGA can go through the 
bacteria cell and release the components of the cytoplasm, 
leading to bacteria death (36-38). Therefore, this compound 
has been widely used for tooth decay prevention. Palaniraj 
et al (19) examined the possible anti-biofilm effects 
of CGA when loaded to calcium phosphate-chitosan 
nanoparticles in restorative dentistry and reported that 
CGA significantly enhanced biofilm degradation up to 
68%. Likewise, CGA revealed no toxicity effect on HaCaT 
cells up to 40 μg/mL. In the present study, CGA showed 
a considerable binding affinity to the MMP-8 catalytic 
domain with the ∆Gbinding of -11.81 kcal/mol. It was also 
estimated that this compound can inhibit the MMP-8 at 
the nanomolar scale Ki = 2.22 nM. CGA demonstrated 
three hydrophobic and two hydrogen bonds with Leu160, 
Val194, His197, Asn218, and Tyr219 within the MMP-8 
catalytic domain. According to the potential inhibitory 
effect of CGA on MMP-8, in addition to the anti-bacterial 
activity of this component, CGA might be considered as a 
useful compound in restorative dentistry with protective 
effects against dental caries.

Similarly, Yamamoto and Ogawa (39) investigated 
the antimicrobial activity of perilla seed extracts against 
several bacteria involved in the pathogenesis of tooth 
caries and periodontitis, including oral streptococci and 

different strains of P. gingivalis (20). They concluded that 
rosmarinic acid revealed stronger antibacterial activity 
against various strains of P. gingivalis compared with oral 
streptococci. According to our results, rosmarinic acid 
can potentially connect to the MMP-8 catalytic site with 
a noticeable ∆Gbinding and Ki of -11.03 kcal/mol and 8 nM, 
respectively. Rosmarinic acid demonstrated two hydrogen 
and two hydrophobic interactions with Ile159, His197, 
Tyr219, and Ala220 within the MMP-8 active site. It may 
be concluded that rosmarinic acid has several protective 
effects on dental caries and periodontitis. However, 
confirmation is needed in this regard.

In another study, Kuramoto et al (40) found that CAPE 
significantly enhanced the expression and/or activity of 
the vascular endothelial growth factor (VEGF), nuclear 
factor-kappa B (NF-κB) transcription factor, and VEGF 
receptor- (VEGFR-) 2 in rat odontoblast cells (KN-3 cells), 
leading to elevated mineralization activity in KN-3 cells. 
Based on our findings, CAPE demonstrated a salient 
binding affinity to the MMP-8 catalytic domain with a 
∆Gbinding of -10.23 kcal/mol. CAPE formed three hydrogen 
interactions and one hydrophobic interaction with His197, 
Pro217, Asn218, and Tyr219 inside the MMP-8 catalytic 
site. According to the findings of previous research, in 
addition to our results, it may be declared that CAPE 
could be considered as a new organic compound with 
conservative and regenerative properties in dental pulpal 
tissue as well as anti-tooth caries effects by inhibiting the 
MMP-8, and therefore, CAPE might be a useful compound 
in restorative dentistry (40). It is noteworthy that propolis 
is a rich source of CAPE (41, 42). Further, the ∆Gbinding and 
Ki for caffeic acid 3-glucoside were evaluated to be -11.26 
kcal/mol and 5.57 nM, suggesting a considerable affinity 
of binding between caffeic acid 3-glucoside and the 
MMP-8 active site. Caffeic acid 3-glucoside formed seven 
hydrogen and two hydrophobic interactions with Gly158, 
Ala161, Val194, His197, Glu198, Ala213, Leu214, Pro217, 
and Ala220 inside the MMP-8 catalytic domain.

N-p-Coumaroyltyramine is mainly found in Tribulus 
terrestris, which has been widely used in Chinese and 
Indian traditional medicine with several biological effects 
such as anticancer, antidiabetic, hepatoprotective, and 
anti-cariogenic properties (43). In addition, Oh et al (44) 

Table 4. Pharmacokinetics and Toxicity of Top-Ranked Cinnamic Acid Derivatives Predicted Using Bioinformatics Webservers

Ligand Name

ADMET Toxicity

GI abs
BBB 

Permeant
P-gp 

Substrate
CYP1A2 
Inhibitor

CYP2C19 
Inhibitor

CYP2C9 
Inhibitor

CYP2D6 
Inhibitor

CYP3A4 
Inhibitor

hERG 
Inhibition

Carcino_
mous

Carcino_
rat

Chlorogenic acid Low No No No No No No No Medium risk Negative Negative

Caffeic acid 
3-glucoside

Low No No No No No No No Medium risk Negative Negative

Rosmarinic acid Low No No No No No No No Medium risk Negative Positive

N-p-
Coumaroyltyramine

High Yes No No No No Yes Yes Medium risk Negative Negative

Caffeic acid
phenethyl ester

High Yes No Yes No No No No Medium risk Negative Negative

Note. GI: Gastrointestinal; Abs: Absorption; BBB: Blood–brain barrier; P-gp: p-glycoprotein; CYP; Cytochrome p-450; Kp: Skin permeation coefficient; LD50: 
Lethal dose 50%; hERG: Human ether-a-go-go-related gene; ADMET: Absorption, distribution, metabolism, excretion toxicity.
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demonstrated that T. terrestris diminishes the caries-
associated S. mutans. However, it should be identified that 
which of the active compounds within the T. terrestris is 
responsible for the inhibition of S. mutans. Based on our 
simulations, it was estimated that N-p-Coumaroyltyramine 
can inhibit the MMP-8 at the nanomolar scale (Ki = 30.78 
nM) with the ∆Gbinding of -10.25 kcal/mol, representing 
that N-p-Coumaroyltyramine could be considered as an 
anti-tooth caries compound via inhibiting the normal 
activity of MMP-8. N-p-Coumaroyltyramine revealed 
three hydrophobic and three hydrogen interactions with 
the His197, Pro217, Tyr219, and Ala220 of the MMP-8 
catalytic site.

It is worth mentioning that a π-π stacking hydrophobic 
interaction was detected between His197 and CGA (4.08 
Å), caffeic acid 3-glucoside (4.25 Å), rosmarinic acid (4.46 
Å), N-p-Coumaroyltyramine (4.14 Å), and CAPE (4.04 
Å), proposing that these components can potentially form 
a stable connection with the MMP-8 catalytic site.

Conclusions
In general, it was estimated that five of the cinnamic acid 
derivatives, including CGA, caffeic acid 3-glucoside, 
rosmarinic acid, N-p-Coumaroyltyramine, and CAPE, 
can connect to the MMP-8 catalytic site at the nanomolar 
concentration with the criteria of ∆Gbinding < -10 kcal/
mol, and therefore, were introduced as potential MMP-
8 effective inhibitors. Additionally, these components all 
agreed with Lipinski’s RO5 and represented no significant 
toxicity, and thus may be beneficial for preventive/
therapeutic aims in dentistry. Eventually, His197 was found 
to be the most active residue within the MMP-8 catalytic 
site. However, validation is inevitable in the future. 
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