
Background
Oral cancer is one of the most life-threatening 
malignancies. Oral squamous cell carcinoma (OSCC) 
encompasses more than 90% of oral malignant tumors 
(1). Different carcinogenic factors, such as tobacco 
alcohol, smoking, smokeless tobacco, occupational 
exposure, radiation, candida, and oncogenic viruses, are 
involved in the initiation and development of OSCC. 
Epstein-Barr virus (EBV), Herpes simplex virus (HSV), 
human papillomavirus (HPV), and retroviruses have 
been introduced as viral carcinogenic factors in OSCC 
development (2).

Viruses related to the occurrence of oral cancer are 
divided into two groups, including viruses that have a 
strong association with OSCC development, such as HPV 
and HSV. The second group belongs to viruses such as 
EBV, which have a negligible connection with oral cancer 
(3). Previous studies have shown the complementary RNA 
to HSV in more than 50% of OSCCs (4). Based on in vitro 
studies, HSV is mutagenic (5) and able to stimulate DNA 
synthesis (6). It has been suggested that HSV infection 

contributes to carcinogenesis through the activation and 
overexpression of c-myc and c-erb-B-1 (7).

MicroRNAs (miRNAs) are small RNAs with nucleotides 
with a length of 18–22 that are involved in messenger 
RNA degradation/translation (8). Studies demonstrate the 
important role of miRNAs in the pathogenesis of head and 
neck SCC (9-10). MiRNAs affect messenger RNAs and 
regulate gene expression (11). MiRNAs have a critical role 
in carcinogenesis as an oncogene or a tumor suppressor 
gene. Proliferation, differentiation, and genome stability 
are affected by microRNAs. Alterations in miRNA 
expression prompt the development of cancer (12). The 

overexpression of miR-221, miR-222, hsa-miR-29c, and 
hsa-miR-21 has been shown in oral cancer cells (13,14).

HSV has contributed to oral carcinoma initiation, but its 
carcinogenic role has not been elucidated so far (15). The 
findings of this study will help us understand the possible 
mechanisms of viral-induced OSCC. It was sought to 
examine the effect of HSV-1 infection on the expression 
of miR-29c, miR-221-5P, miR-21-5P, and miR-96-5P in 
OSSC. Based on our knowledge, this study is the first to 
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Abstract
Background: Herpes simplex virus type 1 (HSV-1) infection contributes to oral carcinoma, 
but its carcinogenic role has not been elucidated yet. MicroRNAs (miRNAs) are involved in 
carcinogenesis. The aim of the present study was to examine the effect of HSV-1 infection on the 
expression of miR-29c, miR-221-5P, miR-21-5P, and miR-96-5P in patients with oral squamous 
cell carcinoma (OSSC).
Methods: Twenty-five cases of OSCC and 25 samples of normal oral mucosa were examined in 
this study. The SYBR real-time polymerase chain reaction (RT-PCR) was completed to confirm 
the presence of HSV-1. The expressions of miR-29c, miR-221-5P, miR-21-5P, and miR-96-5P 
were measured using RT-PCR.
Results: The expression of miR-221-5P was significantly higher in OSCC with HSV-1 infection 
compared to non-infected cases (P = 0.007). The expressions of miR-29c, miR-21-5P, and 
miR-96-5P were not significantly different between OSCCs with HSV-1 infection and controls 
(P = 0.27, P = 0.66, and P = 0.23, respectively).
Conclusion: HSV-1 infection had an up-regulation effect on miR-221-5P in OSCC. This finding 
proposes a novel mechanism for HSV-1 infection in the development of OSCC.
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focus on the expression of miR-29c, miR-221-5P, miR-21-
5P, and miR-96-5P in HSV-infected oral cancer cells.

Materials and Methods
Tissue Samples
Twenty-five OSCC and 25 samples of normal oral mucosa 
were obtained from the archives of the Department of 
Pathobiology, School of Public Health, Tehran University 
of Medical Sciences and the Pathology Department of 
Tehran University of Medical Sciences. All samples 
were formalin-fixed, paraffin-embedded sections from 
incisional biopsies. The selected samples were from the 
tongue and floor of the mouth. To consider the possible 
effects of hormones on OSCC development, only female 
samples entered the study. Adequate tumoral mass and 
the absence of necrosis/hemorrhage were the inclusion 
criteria. On the other hand, the exclusion criteria included 
chemotherapy and/or radiotherapy treatment. Marginal 
sections were not included in the examination (16).

Total DNA Extraction
Two 5 μm sections were prepared from each block and 
placed in a 2 mm microfuge tube. To remove paraffin, 1 
mL of xylene was added to the tube holding the sample 
and then incubated in a shaker incubator for 30 minutes 
at a low speed of 55 °C. Then, the tube was centrifuged at 
12 000 rpm for 2 minutes. The supernatant was removed, 
and the procedure was repeated 2 times. The tissue was 
washed twice with 100-degree ethanol. After the last wash, 
the ethanol was removed, and the tube with the tissue 
sediment inside was placed in the greenhouse until the 
ethanol evaporated completely.

Total DNA was extracted using the AmpliSens® DNA-
sorb-B (MoBiTec GmbH) according to the manufacturer’s 
protocol. For this purpose, 0.1 mL of the sample and 300 μL 
of the warm lysis solution were placed in tubes and spined 

for 5 seconds, and then incubated at 65 ºC for 5 minutes. 
Next, 400 μL of the precipitation solution was added and 
centrifuged at 12 000 rpm for 5 minutes. After removing 
the supernatant to a clean tube, 500 μL of the washing 
solution was added to each tube, spun thoroughly, and 
then centrifuged at 13 000 rpm for 2 minutes.

The processes of removing the supernatant to a clean 
tube, adding 200 μL of the washing solution to each tube, 
spinning thoroughly, and centrifuging at 13 000 rpm for 2 
minutes were continued. After removing the supernatant 
completely, the tubes were incubated at 65°C for 5–10 
minutes with open caps. Subsequently, 50 μL of the 
RNA buffer was added, and the tubes were vortexed and 
incubated at 65ºC for 5 minutes. Finally, the tubes were 
centrifuged at 13 000 rpm for 1 minute.

Primers Designing
The primers (Table 1) for the HSV-1 strain RNA sequence 
were designed by using the Primer-BLAST online tool 
(17).

Real-Time Polymerase Chain Reaction
Real-time PCR was completed using primers designed 
with Primer-BLAST site software. According to the 
manufacturer’s protocol, 25 µ of Master Mix Multiplex 
(Ampliqon) was used to test miRNA expression. The 
SYBR RT-PCR was set up in separate tubes for each viral 
agent. Inside each tube, a pair of primers for the target 
agent and the internal control gene were utilized, and 
the simultaneous reaction was set in 2 tubes. Finally, the 
results were confirmed based on melting curve analysis. 
B-actin was used as an internal control. PCR amplification 
and reading were achieved with the StepOne RT-PCR 
system under conditions of 4 minutes at 94 °C, followed 
by 40 cycles of 95 °C for 15 seconds, 55 °C for 55 seconds, 
72 °C for 20 seconds, and 72 °C for 10 minutes (Figure 1).

Figure 1. Melting Curve Analysis for HSV-I Using SYBR Real-Time PCR. Note. HSV-I: Herpes simplex virus type 1; PCR: Polymerase chain reaction.
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Total RNA Extraction
About 20–25 mg of the homogenized sample tissue was 
placed in microtubes without nuclease. The homogenized 
tissue was washed with cold phosphate-buffered saline 
and then centrifuged at 3000 rpm for 2 minutes. In 
addition, 1 mL of trizole was added to the homogenized 
tissue, and after mixing, it was incubated for 5 minutes. 
Then, 250 μL of chloroform was added and vigorously 
shaken for 15 seconds. The microtube was placed at 4 
°C for 15 minutes. The microtube was centrifuged for 
20 minutes at 4 °C at 13 000 rpm. The blue phase was 
carefully removed from the microtube with a sampler and 
transferred to an additional microtube. Further, 500 µL of 
isopropanol was added, incubated on ice for 10 minutes, 
and then centrifuged at 13 000 rpm for 10 minutes at 4 
°C. The supernatant was thrown out, and 1000 µL of 
75% ethanol was added and mixed. The microtube was 
centrifuged for 5 minutes at 4 °C at 8000 rpm. To remove 
the ethanol, the microtube deposit was dried under a hood 
at room temperature for 10‒15 minutes. Furthermore, 50 
µL of nuclease-free water was added to the dried sediment, 
and the microtube was placed at 55 °C for 15 minutes. 
To remove possible DNA contamination, the DNase I 
enzyme (Sinaclon Company, Iran) was used to extract the 
RNA. The microtube was incubated for 30 minutes at 37 
°C, then 1 mL of ethylenediaminetetraacetic acid at 50 mM 
concentration was added, and the microtube was again 
placed at 65 °C for 10 minutes. The obtained samples were 

stored at -70 °C.

RNA Quality Assessment
RNA quality was assessed by optical density, and 
absorbance at 260 nm by the Nanodrop ND-1000 device 
(Nanodrop Technologies, Wilmington, DE).

Complementary DNA Synthesis
cDNA was completed using the RevertAid First Strand 
cDNA Synthesis Kit (Thermo Fisher, K1622), according 
to the manufacturer’s guidelines; about 7 µL of RNA 
and 1 μL of the random hexamer primer up to 13 μL of 
diethylpyrocarbonate-treated water were incubated at 
70 °C for 5 minutes and then placed on ice. Next, 4 μL 
of the 5x first-strand buffer and 1 μL of deoxynucleoside 
triphosphates were added and incubated at 25 °C for 5 
minutes. After adding 1 μL of the reverse transcriptase 
enzyme, thermal cycling was achieved at 42 °C for 60 
minutes and 70 °C for 10 minutes.

Real-Time Polymerase Chain Reaction
Gene expression was investigated by the relative 
qualification method. The RT-PCR test was performed 
using primers designed with MicroSEQ site software 
(Table 2).

The RT-PCR was conducted by the SYBR green 
method using the FIREPol® EvaGreen® qPCR Mix kit 
based on the instructions and temperature cycle; around 

Table 1. Primer Sequence for HSV-1

Type Primer Sequence (5'- > 3') Length Tm (°C) GC% Product Length

HSV-1 Forward TATTGGTGCGATGGCGACAC 20 61.09 55 143 bp

Reverse CTTTCCGCATGTGGGCTCTC 20 61.37 60 1 bp

RNaseP Forward AGA TTT GGA CCT GCG AGC G 19 60.45 57.99 56 bp

Reverse GAG CGG CTG TCT CCA CAA GT 20 62.44 60 1 bp

Note. Tm: Temperature; C: cytosine; G: guanine ; HSV: Herpes simplex virus.

Table 2. Primer Sequence of Tested miRNAs

Tested miRNAs miRNA Sequence Primer Sequence (5'- > 3')

 > hsa-miR-21-5p UAGCUUAUCAGACUGAUGUUGA Forward GCTTATCAGACTGATGTTGAGTCGT

Reverse TCAACATCAGTCTGATAAGCTA

Stem loop
GTCGTGGTAGCTTATCAGACTGATGTTGACTGTTGAATCTCATGGCAA-
CACCAGTCGATGGGCTGTCTCTTCT

 > hsa-miR-29c-5p UGACCGAUUUCUCCUGGUGUUC Forward GCTTATCAGACTGATGTTGAGTCGT

Reverse GAACACCAGGAGAAATCGGTCA

Stem loop
GTCGTTGACCGATTTCTCCTGGTGTTCAGAGTCTGTTTTTGTCTAGCAC-
CATTTGAAATCGGTTATGATGTAGGGGGAGTTCT

 > hsa-miR-96-5p UUUGGCACUAGCACAUUUUUGCU Forward GGCACTAGCACATTTTTGCTGTCGT

Reverse TTTGGCACTAGCACATTTTTGCT

Stem loop
GTCGTGGCACTAGCACATTTTTGCTTGTGTCTCTCCGCTCTGAGCAAT-
CATGTGCAGTGCCAATATGGGAAATGCTT

 > hsa- miR -221-5p ACCUGGCAUACAAUGUAGAUUU Forward CTGGCATACAATGUAGATTTGTCTG

Reverse AAATCTACATTGTATGCCAG

Stem loop
GTCTGGGGCATGAACCTGGCATACAATGTAGATTTCTGTGTTCGTTAG-
GCAACAGCTACATTGTCTGCTGGGTTTCAGGCTACCTGGAAACAT-
GTTCTCTTTTCT

Note. miRN: MicroRNA.
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5 μL of template (cDNA), 12.5 µL of Master Mix, 4.5 µL 
of diethylpyrocarbonate water, and 1 µL of each primer 
(forward, reverse, and stem loop) were added to each vial. 
The reactions were completed along these lines, including 
1 cycle at 50 °C for 30 minutes and then 1 cycle at 94 °C for 
2 minutes, continuing by 40 cycles at 94 °C for 15 seconds, 
55 °C for 30 seconds, and 72 °C for 30 seconds. The last 
cycle was at 72 °C for 10 minutes. The comparative CT 
method (ΔΔCt) was used to analyze differences in the 
expression of each group. The expression of the CT value 
of genes was calculated and compared with the expression 
of the RNaseP gene (Figure 2).

Statistical Analysis
A two-tailed t-test was utilized to compare the difference 
in the mean expression of microRNAs (miR-29c, miR-
221-5P, miR-21-5P, and miR-96-5P) between cases and 
controls at the P < 0.05 probability level of the test. SPSS 
(version 22; IBM Company) was used for statistical 
analysis.

Results
The age range of OSCC cases was from 22 to 75 years, with 
a mean of 47.7 ± 12.5. In controls, the age ranged from 26 
to 68 years, with a mean of 45 ± 8.4. 
The expression of miR-96-5P and miR-221-5P was 
significantly higher in OSCCs than in controls (P = 0.005 
and P < 0.0001, respectively). The expression of miR-21-
5P and miR-29c was not significantly different between 
cases and controls (P = 0.18 and P = 0.11, respectively), the 
details of which are listed in Table 3.

The expression of miR-221-5P was significantly higher 
in OSCC with HSV-1 infection compared to non-infected 
cases (P = 0.007). The expression of miR-29c, miR-21-5P, 
and miR-96-5P was not significantly different between 
OSCCs with HSV-1 infection and controls (P = 0.27, 
P = 0.66, and P = 0.23, respectively). The obtained data are 
summarized in Table 4.

Discussion
The results revealed that the expression of miR-96-5P and 
miR-221-5P was significantly higher in OSCC compared to 
controls. The expression of miR-221-5P was significantly 
higher in OSCC with HSV-1 infection in comparison to 
non-infected cases. 

MiRNAs have been introduced in different cancer 
biogenesis processes, such as apoptosis, proliferation, and 
metastasis. MiRNAs may act as an oncogene or a tumor 
suppressor gene in different tumors. The expression 
of miR-221-5P was significantly higher in cases with 
OSCC than controls in this study, which is consistent 
with those of previous studies on prostate cancer (18), 
hypopharyngeal SCC (19), and renal cell carcinoma 
(20). It has been shown that miR-221-5p is involved in 
the proliferation of prostate cancer cells through the 
regulation of SOCS1 (18). Otherwise, the downregulation 
of miR-221-5p during the progression of prostate cancer 
expresses a tumor suppressive role (21). It seems that 
miR-221-5p modulates cell mechanisms through the 
interaction between different signaling pathways. Its 
function has not been elucidated in the OSCC progression 
and needs further research. The expression of miR-96-5P 

Table 3. MiRNA Expression in OSCC and Control Groups

MiRNAs Groups Number Mean ± SD P Value

miR-21-5P
OSCC 25 20.99 ± 5.12

0.18
Control 25 23.31 ± 6.66

miR-29C
OSCC 25 26.26 ± 4.57

0.11
Control 25 23.89 ± 5.47

miR-96-5P
OSCC 25 25.89 ± 6.89

0.005
Control 25 20.28 ± 5.85

miR-221-5P
OSCC 25 34.35 ± 4.26

 < 0.0001
Control 25 21.97 ± 4.90

Note. OSCC: Oral squamous cell carcinoma; MiRNA: MicroRNA; SD: Standard deviation.

Table 4. MiRNA Expression in OCCs With and Without HSV-1 Infection 

MiRNAs Groups Number Mean ± SD P Value

miR-21-5P
a + HSV-1 6 21.28 ± 3.473 0.66

b - HSV-1 18 22.44 ± 6.358

miR-29C
 + HSV-1 5 27.42 ± 5.139 0.27

- HSV-1 19 24.70 ± 5.209

miR-96-5P
 + HSV-1 19 26.12 ± 3.364 0.23

- HSV-1 25 22.21 ± 7.040

miR-221-5P
 + HSV-1 19 30.44 ± 4.386  0.007

- HSV-1 25 23.49 ± 5.191

Note. SCC: Squamous cell carcinoma; MiRNA: MicroRNA; SD: Standard deviation.
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was significantly higher in OSCC, which is compatible 
with the results of previous studies in head and neck SCC 
(22), hepatocellular carcinoma (23), and ovarian cancer 
cells (24). Phosphatase and tensin homolog have been 
identified direct targets of miR-96-5p in head and neck 
SCC (22). The expression of miR-21-5P and miR-29c was 
not significantly different between OSCC and control 
groups in the present study, which contradicts the findings 
of previous studies, demonstrating the upregulation of 
miR-21-5P in OSCC (16,25). Wang et al reported that 
miR-29c overexpression inhibited the proliferation of 
OSCC cells (26). This is consistent with the result of this 
study. This controversy can be attributed to racial and 
genetic differences. In the studies related to the Iranian 
population, no study was found on miR-21-5P and miR-
29c in OSCC. This finding needs further investigation. 

HSV-1 is a dependent carcinogen in OSCC development 
and increases the risk of OSCC. HSV-1 has been identified 
in 15% of OSCC (27). It has been shown that viruses induce 
miR-146a in dengue virus infection (28), miR-130a in 
hepatitis C virus-infected hepatocytes (29), and miR-221 
in HPV-16-positive cervical cancer cells (30). to intensify 
viral replication. The active or passive role of HSV-1 in 
the carcinogenesis of OSCC has not been evaluated yet. 
The expression of miR-221-5P was significantly higher in 
OSCC with HSV-1 infection compared to non-infected 
cases in the present study. Du et al found the negatively 
regulated IFN-β production in viral infection by miR-
221 (31). Lu and Gu demonstrated the inhibition role of 

miR-221 in HPV 16 E1-E2 (30). The overexpression of 
miR-221 inhibited HSV-1-induced IFN-β expression and 
enhanced the infection of HSV-1 (31). It seems that by 
suppressing the immune response, miR-221 progresses 
tumor development. Based on these mechanisms, miR-
221 may assist as a therapeutic tar get for HSV-1-infected 
OSCC. By virtue of this character, HSV-1 can have an 
effect on viral replication, host immunity, and cytokine 
expression. However, current knowledge about HSV-1 
carcinogenesis is inadequate. In any case, identifying how 
HSV-1 affects the immune system will probably enable us 
to determine its carcinogenic effect (32).

The most important limitation of the present study 
was to obtain OSCC cases infected with HSV-1 in the 
females. Therefore, among the existing cases, many 
samples were excluded from the study because they did 
not meet the necessary inclusion criteria. The findings of 
this study confirmed that the expression of miR-221-5P 
was significantly higher in OSCC with HSV-1 infection. 
Hence, the expression of miRNAs can be a useful predictor 
for therapeutic and preventive purposes. It is suggested 
that the immune signaling pathway of miR-221-5P in 
HSV-1-infected OSCC be examined in future studies. 

Conclusion
The findings of the present study revealed that the 
expression of miR-221-5P was significantly higher 
in OSCC with HSV-1 infection compared to non-
infected cases. It has been hypothesized that HSV-1 has 

Figure 2. Linear Regression Analysis of miR-96-5p: (a) and miR-221-5p and (b) Expression in Oral Squamous Revealed by the Real-Time PCR. Note. PCR: 
Polymerase chain reaction
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an up-regulation effect on miR-221-5P in OSCC. The 
expression of miR-29c, miR-21-5P, and miR-96-5P was 
not significantly different between OSCCs with HSV-1 
infection and controls. Thus, based on the results of this 
study, it seems that miR-221 could affect the development 
of OSCC in HSV-infected cases. This finding proposes 
a mechanism for HSV infection in the development 
of OSCC. This can be a useful tool for therapeutic and 
preventive goals.
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