Effect of 5 Oral Hygiene Teaching Methods on Orthodontic Patients: A Single-Blind Randomized Controlled Clinical Trial

Mohammad Karim Soltani¹, Farhad Jafari¹, Mojgan Taheri²*, Ali Reza Soltanian³, Masoumeh Khoshhal⁴, Sima Torkaman⁵

Abstract

Background: The aim of the present study was to determine the most effective oral hygiene method in fixed orthodontic patients.

Methods: A total of 125 patients who had recently started their orthodontic treatment and had not received oral hygiene instructions were randomly assigned to 5 groups (n = 25): verbal instructions (V), verbal instructions plus pamphlet (V + P), verbal instructions plus video film (V + F), verbal instructions plus the use of disclosing agents (V + D), and pamphlet plus the use of disclosing agents (P + D). One week after the installation of orthodontic appliance, plaque index (PI) and gingival index (GI) were recorded and oral hygiene instructions were provided. One week and 4 weeks after oral hygiene instructions, PI and GI were recorded again.

Results: PI and GI showed significant decreases in 5 groups after 1 week and 4 weeks (P < 0.05). No statistically significant differences were detected between the 5 study groups in terms of plaque reduction after one week. However, after 4 weeks PI values were significantly lower in V + D group compared to P + D group. Regarding GI, V + D method resulted in a significantly lower GI than P + D after 1 week and 4 weeks.

Conclusions: To sum up, all the oral hygiene motivation methods applied in this study can be effective in decreasing PI and GI. However, it appears that the best way is the verbal oral hygiene instruction plus the use of disclosing agents.

Keywords: Oral hygiene motivation, Plaque control, Orthodontic patient

Background

Poor oral hygiene is one of the common problems in orthodontic patients. Fixed orthodontic appliances with attachments like bands, brackets, arch wires, springs, and other hardware increase the retention of plaque, along with making tooth cleaning more difficult (1, 2). In addition, fixed orthodontic appliances are considered an external interference that could affect the microflora of the oral cavity and increase the levels of cariogenic bacteria like Streptococcus mutans and Lactobacillus spp. (3-5).

Accumulation of bacterial plaque predisposes the orthodontic patient to enamel decalcification, dental caries, and gingivitis (6-10).

Numerous studies have examined various methods to prevent these problems. Use of fluoride has been effective in the prevention of dental caries (11).

The effect of using different forms of fluoride has also been investigated in several studies (12). Plaque control is the most important way to prevent problems above mentioned. Therefore, various methods of health education should be considered for plaque control (2).

The use of chlorhexidine and different mouthwashes like herbal and synthetic mouthwashes as a chemical plaque control method have been studied in orthodontic patients (13,14).

Furthermore, a plethora of literature has compared different plaque removal devices. The effectiveness of chlorhexidine and different mouthwashes as a chemical plaque control method have been studied in orthodontic patients (13,14).

*Correspondence to
Mojgan Taheri
Telafax: (+98) 81-38181795
Email: taheri.mojgan.86@gmail.com

Highlights

► All the teaching methods presented in our study were effective in improving oral hygiene in orthodontic patients.
► Plaque index values were significantly lower in “verbal instructions plus the use of disclosing agents” group compared to “pamphlet plus the use of disclosing agents” group.
► Regarding gingival index, “verbal instructions plus the use of disclosing agents” resulted in a significantly lower gingival index than “pamphlet plus the use of disclosing agents”.

References

1. Department of Orthodontics, Faculty of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran. 2. Department of Operative Dentistry, Dental School, Hamadan University of Medical Sciences, Hamadan, Iran. 3. Department of Biostatistics and Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran. 4. Department of Periodontics, School of Dental Medicine, Hamadan University of Medical Sciences, Hamadan, Iran. 5. Resident of Pediatric Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran.
of using various devices such as dental floss (15,16),
different bristle designs of toothbrushes (17), interdental
toothbrushes (18,19), different types of interdental
devices (20), electric toothbrushes (21), and water-jet
(22) has been evaluated in orthodontic patients in many
studies. Nonetheless, it seems that the main problem is
the patient’s motivation. Rigau-Gay et al assessed the
efficacy of a single inspirational interview in increasing
the oral sanitation in orthodontic patients in comparison
with conventional training alone. Obtained data exhibited
an instant improvement in the oral sanitation which
persisted through the 6-month follow-up (23).

Several studies have designed different teaching
methods for oral hygiene in orthodontic patients and
compared them (1, 2). Daily text messages appear to
be an effective reminder for oral hygiene than weekly
text messages. Teenagers are the main generally-treated
patients in orthodontics; therefore, agreement is mainly
important for teenagers. Text messages are a convenient
mode of communication that is widely used for teenagers
and provides a means of growing compliance (24).
Another study showed that oral hygiene status improved
with text message reminder (25). Moreover, computer-
based oral hygiene program is suggested to be more
effective in giving ideal oral health status compared to
the conventional technique in the patients with fixed
orthodontic appliances (26). Therefore, the aim of this
study was to design different teaching methods for oral
hygiene in orthodontic patients and compare them to
achieve an optimal oral health status.

Methods
This clinical trial was conducted in 2 private
orthodontic clinics in Hamadan, Iran (between March
2013 and November 2013). The study was registered
in Iranian Registry of Clinical Trials (identifier: IRCT20190122042457N1; https://www.irct.ir/trial/37162). A total of 125 orthodontic patients (87
females and 38 males in the age range of 12-26 years)
were included in the present study according to the
following criteria: 1) the patients had never received any
oral health instructions, 2) the patients did not
have any learning problems, 3) patients had at least 24
teeth, 4) patients had no systemic disease like diabetes
that may have affected their periodontal conditions, and
5) examined teeth should have been existed in the mouth,
not been extracted or missed. Then, any tooth examined
in this study had not facial or cervical restoration.

Lack of patient cooperation in principles of education
and failure in follow-up or referral appointments led to
the exclusion of some patients from the study. Moreover,
if poor oral hygiene caused severe acute gingivitis, the
patient should have been excluded from the study and
referred to a periododontist.

Similar brackets (American Orthodontics Company)
were bonded by the same orthodontic adhesive
(3M-Unitek light-cured) for all the patients. The same
type of orthodontic toothbrushes (Procter & Gamble,
Weybridge, UK), interdental brushes (Procter & Gamble,
Weybridge, UK), super floss, and fluoride mouthwashes
(Procter & Gamble, Weybridge, UK) were also provided.

Estimation of Sample Size
The initial results of a pilot study revealed that the
average correlation coefficient between plaque index (PI)
before and after the intervention (1 week and 4 weeks
after training) in the section was about 30% (R=0.3).
Moreover, in an early study, each case was measured three
times (at baseline, 1 week, and 4 weeks after training).
Therefore, according to the following formula (No 1),
25 patients were required in each group to evaluate the
proposed goals.

Note that the standard deviation of the PI was
determined by an average of 22 and the maximum
permissible error was assumed to be 5%.
The average correlation coefficient: R = 0.3
The maximum permissible error: D = 5%
The power of study: equal to 90%
The critical number is proportional to the error of the
first kind (Z_{1-β} = 1.96)

\[n = \frac{2 \times \left(Z_{\frac{1-β}{2}} + Z_{1-β} \right)^2 \times \delta^2 (1-r)}{M \times \delta^2 \times d^2} \]

Five oral hygiene instruction methods were designed
in this study: verbal instructions on a model (V), verbal
instructions on a model plus a pamphlet (V + P), verbal
instructions on a model plus video film (V + F), verbal
instructions on a model plus the use of disclosing agents
(V + D), and a pamphlet plus the use of disclosing agents
(P + D). The subjects in all the groups received
the program on oral hygiene procedures from a trained
dental student (Figure 1).

One week after installation of the braces, PI and GI
were measured as baseline values and then the patients
randomly received one of the methods of oral hygiene
instructions. To divide participants into 5 groups, simple
randomization methods were used in this study. To this
end, the simple randomization sequences were generated
and participants were allocated to the groups based on the
sequence. PI and GI were scored on the basis of 6 teeth,
upper right central incisor, lower left central incisor, and
first premolars. Second premolars were scored in cases
with extracted first premolars. PI was based upon that
of Greene & Vermillion (27) and Lees and Rock’ (2) grid
used to record plaque score. After applying the disclosing
agents, the teeth were rinsed and the plaque was examined
Pamphlets and films were specifically designed for this study. The film included 11 minutes of special oral hygiene instructions for orthodontic patients. The script was based on the information included in the pamphlet: the effect of orthodontic treatment on oral health, explanation about the microbial nature of plaque and its effect on teeth and gums, effective plaque removal by orthodontic toothbrushes, interdental brushes, super floss, and instructions for the use of fluoride mouthwash.

Statistical Analysis

Paired t test was used to compare the means of PI and GI at different times. One-way ANOVA was used to compare the groups and post hoc Tukey test was used for two-by-two comparisons of the groups. To evaluate the normal distribution of quantitative variables, one-sample Kolmogorov-Smirnov test was used. In addition, Levene test was used to evaluate the homogeneity. Repeated measures test with greenhouse-Geisser correction was used to analyze the GI, and repeated measures test with sphericity assumption was used to analyze the PI.

Statistical analysis was performed by SPSS version 16.0 (SPSS Inc., Chicago, IL), and based on intention-to-treat strategy. Statistical significance was considered less than
Results

In this study, 125 subjects (38 males and 87 females) participated with a mean age of 17.01 ± 4.27. The mean PI and GI at the baseline, and after 1 and 4 weeks are shown in Figures 3 and 4. Furthermore, the mean PI and GI for both genders at baseline, and 1 week and 4 weeks after the health education are shown, respectively, in Table 1 (sex was not a significant variable in the repeated measures test).

One-sample Kolmogorov-Smirnov test and Levene test showed that the variables had a normal distribution and were also homogeneous. Before education, no significant differences were observed between the study groups in terms of PI and GI values (P<0.05).

Plaque Index

After 1 week, significant decreases were observed in all groups in terms of PI compared to the baseline (P<0.05). Whilst differences were not significant between the 5 groups regarding the plaque reduction after this period. The mean changes of PI among the groups were as follows: P + D < V + P < V < V + F < V + D. Furthermore, after 4 weeks, significant decreases were seen in all groups in terms of PI compared to the baseline (P<0.05). The mean changes in PI values among five groups after 4 weeks compared to the baseline were as follows: P + D < V + P < V < V + F < V + D. After 4 weeks, one-way ANOVA revealed significant effects of interactions at P=0.036 level on PI compared to the baseline, and Tukey test showed a difference between the V + D and P + D groups. Comparison of PI one and four weeks after the instruction showed no significant difference between the 5 study groups (P>0.05) (Figure 3).

Note. Verbal instructions (V), verbal instructions plus pamphlet (V + P), verbal instructions plus video film (V + F), verbal instructions plus the use of disclosing agents (V + D), and pamphlet plus the use of disclosing agents (P + D).

Table 2 shows the comparisons of PI over time and between groups based on the repeated-measures test assuming sphericity. According to the results, changes showed a decreasing trend over time (P<0.001). But this downward trend was not significantly different between groups (P=0.079).

Gingival Index

One and 4 weeks after the trainings, GI significantly decreased compared to the baseline values in all groups (P<0.05). When comparing the 5 groups, ANOVA showed significant differences after 1 week (P=0.047) and 4 weeks (P=0.02).

Moreover, Tukey test revealed that groups V and V + D had significant differences in terms of gingival scores after both time points, namely 1 week and 4 weeks. The mean changes of GI between the groups, 1 week and 4 weeks after oral instruction compared to the baseline, were as follows: V < P + D < V + P < V + F < V + D (Figure 4).

Table 3 shows the comparisons of GI over time and between groups based on the repeated-measures test with Greenhouse-Geisser correction. According to the results, changes had a decreasing trend over time (P<0.001) and this downward trend was significantly different between the groups (P=0.018).

Discussion

Improving oral hygiene in orthodontic patients has been investigated in a plethora of previous studies. These studies have examined the effects of various mechanical devices and chemical materials, however motivation and
the effect of training methods in the patients have become more important recently. Motivational methods applied in the studies could be commonly categorized including message reminders, behavioral modification, and chairside education. Chairside oral hygiene instruction was the most frequently used method for increasing the motivation of oral hygiene. Verbal and written data, pictures or catalogs, videos, and visual appliances were applied by researchers to describe the mechanism of plaque formation, alert the danger of poor oral hygiene, and recommend brushing techniques (23,29,30).

The best ways people learn may be different and no single instructional method suits all the learners (1,31). It seems that the most common method of oral hygiene education in a modern orthodontic clinic is face-to-face training. In this technique, patients will have better learning opportunities. However, it appears that face-to-face training is not sufficient alone to persuade orthodontic patients to achieve good oral hygiene. Maybe that is why oral hygiene problems like multiple dental caries, gingivitis, and white spots are still common in patients with fixed orthodontics (7,10,32). Dentists are required to provide oral hygiene instructions and motivate patients to achieve optimal health and prevent the problems abovementioned (33,34). Therefore, different conventional methods in health education were compared in this study.

In the present study, different groups were designed aimed at reinforcing face-to-face training. Thus, the main methods including written instructions, video films (31,35), and disclosing agents (36,37) were added to the verbal instructions. These materials are practical and popular for educational purposes.

All the oral hygiene techniques used in this study were effective in decreasing plaque and gingivitis after 1 week and 4 weeks. However, the results showed that V + D was more effective in eliminating plaque and decreasing GI scores than the other techniques.

Boyd showed that use of disclosing agents can be effective in self-monitoring the plaque control in the orthodontic patients (36). This result supports ours in that disclosing agents change the color of plaque and provide the direct observation of plaque by patients for their own assessment. Therefore, disclosing agents can be effective in motivating patients. However, contrary to the results of the present study, Tan and Wade found no significant difference in the improvement of plaque control between the group who received only individual oral hygiene instructions and another group who received the same oral hygiene instructions supplemented with the home use of a disclosing agent. They concluded that repeated oral hygiene education seems to be the most important feature in patient motivation (37).

The mean PI in 125 patients before receiving oral hygiene instructions was 74%, meaning poor oral hygiene based on Greene and Vermillion (27). After education, PI reached to 37% which implies moderate oral hygiene. However, one study indicated that the mean PI in patients without orthodontic appliance was 34% before oral hygiene education (38). This indicates that orthodontic patients not receiving oral hygiene instructions may have worse oral health than patients without orthodontic appliances.

In a study on the effect of orthodontic treatment on gingivitis, Davies et al reported that girls have better oral hygiene and lower PI and GI than boys (39). Moreover, the present study demonstrated that the mean PI and GI were lower in girls before and after oral health instructions, though not statistically significant. Our findings were also in accordance with a previous study by Kudirkaitė et al on oral hygiene among adolescents with fixed orthodontic appliances (40).

Many studies have demonstrated that plaque accumulates again after removal and reinforcement by appropriate methods is necessary. Since verbal instruction at each visit is costly and time-consuming (41), reinforcement of verbal instruction is beneficial for the patients and practitioners.

Conclusions

To sum up, all the training methods presented in our study were effective in improving oral hygiene in orthodontic patients. Further, it was shown that verbal instructions on a model plus the use of disclosing agents (V + D) and pamphlet plus the use of disclosing agents (P + D) were the most and the least effective methods in decreasing PI,

<table>
<thead>
<tr>
<th>Time</th>
<th>Group</th>
<th>Mean (SD)</th>
<th>F (Time*Group)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>V</td>
<td>4.32 ± 4.41</td>
<td>2.73</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>V + P</td>
<td>5.32 ± 5.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V + F</td>
<td>6.52 ± 6.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V + D</td>
<td>7.80 ± 5.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P + D</td>
<td>5.32 ± 5.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One week later</td>
<td>V</td>
<td>1.84 ± 3.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V + P</td>
<td>1.00 ± 2.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V + F</td>
<td>1.04 ± 2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V + D</td>
<td>1.72 ± 2.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P + D</td>
<td>2.00 ± 3.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Four weeks later</td>
<td>V</td>
<td>2.56 ± 3.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V + P</td>
<td>1.44 ± 2.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V + F</td>
<td>1.32 ± 1.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V + D</td>
<td>1.60 ± 2.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P + D</td>
<td>2.76 ± 4.57</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F (time) 82.50
P-value <0.001
respectively. Moreover, considering the improvement of gingival condition, verbal instructions on a model plus the use of disclosing agents (V + D) was the most appropriate method and verbal instructions on a model method (V) was the least.

Authors’ Contribution
MKS, FJ and MK have contributed to the conception and design of the study. MT and ST contributed to the data collection and drafted the manuscript. The statistical analyses and interpretation of data were carried out by ARS. All the authors have read and approved the final manuscript.

Ethical Statement
The study protocol was approved by the Ethics Committee of Hamadan University of Medical Sciences.

Conflict of Interest Disclosures
None of the authors have any conflicts of interest.

Acknowledgments
This investigation is part of a thesis by Mojgan Taheri, which was approved and financially supported by the Vice Chancellor of Research and Technology Center of Hamadan University of Medical Sciences, Hamadan, Iran.

References

© 2019 The Author(s); Published by Hamadan University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.